

Coal Combustion Inc. Understanding the business of coal

Three-day Coal Quality & Combustion Engineering Workshop Class by Rod Hatt

114 South Main Street, Versailles, KY 40383 Phone: (859) 873-0188 Fax: (859) 873-0252 Please visit our website at www.coalcombustion.com

GCI	Coal Combustion Inc. Understanding the business of co
	Understanding the business of co

Three-day Coal Quality and Combustion Engineering Workshop

Class Outline By Rod Hatt

Boiler Basics

Major components of PC - fired boiler

Coal Formation

What is Coal -

Coal Rank

Where are the different coals located?

Coal Mining

Surface Deep

Out of seam dilution

Coal Washing Drying coal

Transportation Impacts Time and Climate Barge Coal tends to gain moisture

Sampling coal and coal analyses

Sampling methods The Good, The Bad and the Ugly Good sampling is hard work ISO, ASTM Sampling Guidelines Hand samples Feeder and belt Car top Mechanical Sampling Sampling systems Augers Core holes

Terms

Proximate . Moisture, ash, volatile, fixed carbon (by difference) Short Prox . Moisture, ash, sulfur, Btu/lb Ultimate . Moisture, ash, sulfur, + carbon, hydrogen, nitrogen, oxygen (by difference)

Coal Cost

Sold by the ton - \$/ton Boilers want Calorific Value not tons Evaluated by the Kcal or millions of Kcal (MMcal.)

Coal Handling

Moisture plays a dominant role

Fines

What sizes are important?

Clays and mineral matter

Chemical additives

Spontaneous Combustion

Combustion

The three Top in practice

Size the coal and add air!

Coal Reactivity

The Story of NOX

To minimize the formation of NOx

Post Combustion Control

Combustion Tune-up Procedures

Air Flow and Balancing

Air Heater Leakage Other Leakage Balancing

> O2 levels Temperature Flows Opacity NOx

Pulverizer Performance

Coal Sizing Air and Fuel Flow Clean and Dirty Coal Pipe Measurements Pyrite Rejects Primary Air Flow Adjustments include: Roller and journal pressure, alignment, air flow, Classifiers, temperature, ball charge, ball size,

LOI Testing and Combustion Verification

LOI Test Carbon in Ash Sampling Location Sampling Methods Operator Feedback CO Analyses NOx Analyses

Results Engineering

Boiler Efficiency Testing Output/Input Heat Loss Method **Problem areas**

Improving Boiler Efficiency Improving Combustion Optimizing Combustion Optimizing NOx

Unit Heat Rate

Input/Output Performance Diagrams

Ash Deposits - Introduction

Types of Ash Deposits

Wall Slag Superheater Slag Convection Pass Fouling Low Temperature Deposits

Causes of Ash Deposits

Fuel Related

Equipment Related

Design Related

Analytical Procedures

The ASTM Fusion Temperature Test.

Ash levels used as slagging and fouling indices.

Elemental loading Pounds of iron per million Btu Pounds calcium, sodium, and other elements

Slagging with Bituminous Type Ash - High Iron

Ash fusion temperatures Advanced ash fusion techniques.

Ash Chemistry

Basic Slagging factors

B/A. Base to acid ratio, sum of total bases divided by sum of all acid elementsSlagging Factor .Ash and Elemental Loading

Slagging index Dry sulfur x B/A Iron or sulfur squared term

Silica% Raask Quartz, Clay type

Computer Controlled Scanning Electron Microscopy provide some of the best mineralogical information but has not come into common use.

Cyclone and Wet Bottom Furnaces

Ash Viscosity . Calculating T-250 Measuring T-250 Temperature verses Ash Viscosity Curves

Fouling Deposits

Sulfate salts . CaSO₄, (K, Fe) SO₄, H₂SO₄, (NH₄)HSO₄, (NH₄)₂SO₄

Chemical Fractionation Active alkali Water soluble Ammonium Acetate soluble Weak acid soluble Micro crystals

> Major and Minor Ash Elements Acid Oxides or Glass Formers Basic Oxides or Fluxing agents or Gluing Elements

TABLE I - Major Causes of Ash Deposits

Fuel Related	Large pyrite particles that impact the furnace wall before they completely combust	
	Clay minerals that contain significant amounts of iron, calcium, sodium or potassium causing them to have low melting temperatures	
	Interaction of pyrite, clays and alkalis with alumino silicates to form low viscosity melts	
	Extremely fine or organically bound alkalis	
Equipment Related	Soot blowers not in operation or used improperly	
	Poor pulverization of fuel	
	Improper air to fuel ratio	
	Burners damaged or improperly adjusted	
	Changes in operation of boiler or other equipment	
Design Related	Furnace size too small for fuel	
	Tube material and/or spacing inadequate	
	Soot blowing coverage inadequate	
	No means provided to observe slag buildup	
Most Slag bogins on the Europee walls and the proceeds up the furnace		

Most Slag begins on the Furnace walls and the proceeds up the furnace

Advanced Methods for Slag

Mineral and Elemental Analyses of Coal

Computer Controlled Scanning Electron Microscopy (CCSEM)

Uses Energy Dispersive X-ray Analyses (EDAX) to size and quantify elemental composition.

Low Temperature Ashing

Microscopically identify minerals present

Chemical Fractionation

Provides information on Organically Bound elements

Elemental Analyses of float sink and/or size fractions

Can be performed by ASTM coal laboratories Pounds of iron per million Btu

Pounds calcium, sodium, and other elements

Ash Deposit Analyses

Sampling Procedure for Ash Deposits Polarized Light and Scanning Electron Microscopy Forms of Iron by chemical fractionation Mossbauer spectroscopy

Fouling Deposit Formation

Electrostatic Precipitators

Basic Operation Principles

High Voltage DC . Transformer Rectifier Sets
Voltage Control . Controlling the wave from and sparking rate
Sizing ESP . Plate area (fixed) and Flue gas volume (operational variable?)
Migration Velocity or why the particle goes to the plate
Ash Resistivity concerns
Gas Velocity . impacts ESP size and treatment time
Rapping . important equipment that can be high maintenance
Hopper Evacuation . useful for determining ash partitioning
Dust Collection and Storage

Advanced ESP Methods and Tune-up

Combustion Influences Calculating and Measuring Fly Ash Resistivity Correlating and making sense of resistivity data Rappers High Voltage controls Measuring gas flows and particular loadings ESP Inspections Tune-up Procedures

Ash Handling Scrubber Out of stack pollutants Trace Elements

Summary

Coal Specifications

Computerized Evaluations

Test Burns

Conclusion