

Coal Combustion Inc. Understanding the business of coal

Coal Quality As the Boiler Sees It Rod Hatt

Coal Combustion, Inc. www.coalcombustion.com

Finding Hot Spots

Short Prox

- **Moisture** total moisture in sample
- Ash inorganic rock like material remaining after complete combustion Sulfur – total sulfur in sample including organic, pyritic, and sulfate
- **Heating Value** higher heating value (HHV) of coal expressed as Btu/lb. British thermal unit (Btu) is the amount of energy needed to raise one pound of water one degree F.

Ultimate Moisture, Ash, Sulfur – as described **Carbon** – total elemental carbon Hydrogen – total elemental hydrogen not included in moisture, (fuel hydrogen) Nitrogen – total elemental nitrogen **Oxygen (by difference)** – remaining major element calculated by summing moisture, ash and elements listed above and subtracting from 100

Ash Chemistry Major & Minor Elements % of Ash

 SiO_2 AI_2O_3 TiO_2 SO_3 Fe_2O_3 CaO MgO K_2O Na_2O

Boilers want Heat.

We know this because operators say things like:

We'll add some heat We're pour'n the coal to her **Burn Baby Burn Get her Hotter** Add Fuel to the Fire We increase the fire Let's get things heated up We burn coal Hunka, hunka Burning coal Let's stoke her fire Poke those embers We heat it up Stoke'm up baby Were going to make it real hot

We understand the concept of buying Btus by pricing fuels In:

\$/MBtu = (\$/ton) / 2x(Btu/lb/10,000)

Example:

\$40/ton coal 12,500 Btu/lb. \$/MBtu = (40)/2x(12,500/1,000)\$/MBtu = (40)/(2x12.5)\$/MBtu = 40/25 = 1.60 per MBtu

We understand the concept of buying Btus and,

Boilers want heat.

Lets look at all boiler related coal qualities on a heat basis; lets put all percentages on a per million Btu basis

LOADING LEVELS

The industry has used SO₂ emission levels expressed in Ibs SO₂/MBtu for over 20 years

ESP performance is based on the Ibs Ash/MBtu, Ash Loading, not percent ash.

Lbs. of ash/MBtu = %ash / (Btu/10,000)

Many slagging concerns have been addressed using Ash Loading and Elemental loading levels; especially

Fe_2O_3 , CaO, Na₂O

Ash Deposits Slagging - Molten Fouling - Sulfate Salts

What does the SO3 represent?

SO3

CaO

Experience suggests that rating PRB coals using calcium and sodium loading levels correlates better than percent sodium and calcium and fusion temperatures

TestHi Na2OLow Na2OBtu/lb9,3009,000% Ash4.06.5% Na2O8.05.0

Test Hi Na₂O? Low Na₂O?

Ib Ash/MBtu 4.3 7.2 % Na₂O 8.0 5.0

$Ib Na_2O/MBtu 0.34 0.36$

Coal Variability

Normal Distribution

Quality Parameter

Skewed Distribution

_			

Quality Parameter

Small and Large Variability

Quality Parameter

Coal Reactivity Volatile Fuel Ratio, FC/Vol MAF Oxygen C/H HGI and others

Coal Reactivity Consider: Volatile Oxygen per million Btus

Property Eastern Bit. PRB

Moisture	7	30
Ash	12	5
Volatile	35	32
Fixed Carbon	47	33
Oxygen	4	12
Btu/lb	12,000	8,800

Property Eastern Bit. PRB

Volatile	35	32
Fuel Ratio	1.34	1.03
MAF Oxygen	4.9	18.5
Vol/MBtu	29	38
	• •	

Oxy/MBtu 3.3 13.6

Pulverizer Capacity

TestEast BitPRBHGI5060Btu/lb12,0008700

Cap 1.0 0.86

Boilers want Heat.