## Understanding Slags & **Fouling Deposits TNBF/RCBC October 9, 2018 Rod Hatt**



Coal Combustion Inc. Understanding the business of coal

## High Fusion Temp Ash

# RAW COAL ASH

# CLEAN COAL ASH Low Fusion Temp Ash



#### Why are we using fusion temperatures?



Test for stoker type boilers No mineralogical data Not the same reactions for all coals



# **Physical Test**

Oxidizing verse Reducing

**Combustion Conditions** 

Poor Lab to Lab



### **Coal Combustion**



### Bit Coal Combustion



### Sub-Bit Coal Combustion



### **Coal Combustion**





How high ash, high OSD, coals can increase wall slag with raw low ash sub-bituminous coals.

### **Coal Combustion**



# Most Slag Starts on walls





# Waterwall deposits force heat to convection pass.

# Then goes To the Superheater



#### Ash Chemistry Major & Minor Elements SiO2 Fe2O3 AI2O3 CaO TiO2 MgO K20

Na<sub>2</sub>O

# Minerals include Quartz Pyrite Clays and shales Carbonates

### Acid Oxides Basic Oxides

SiO2 Al2O3 TiO2

Fe2O3 CaO MgO K20 Na2O

### **Glass Formers**

Fluxes

#### Role of Iron Acid Base **Fe2O3** FeO Fe3O4 Reduced Oxidized Good Poor

#### Fusion Spread Ox-Red Iron Level delta Temp.

# Slag is a build up of rate process SO, the amount of ash should matter.



Figure 2-23. AEP slagging index (31).

na. Na

## Kg of ash/MKcal

# = %ash / (Kcal/10,000)







### Velocity is Important Kinetic Energy = Mass x (velocity)<sup>2</sup> 2 Coal pipe velocity Large dense particles Low Btu, Hi Moist. Pyrite Quartz, rock **Hi PA Flow**

# Kg of Element/MKcal

# = %ash / (Kcal/10,000) X (%Element/100)

# **SPLAT FACTOR**

- 1. Calculate KE for Quartz and Pyrite particles
- 2. Multiply KE times Q & P loading levels
- 3. Multiply result by % on 50mesh screen (>300 microns)

# **SPLAT FACTOR**

Low with low levels of large particles Low with low levels of ash and sulfur Lowers with less PA flow A/F is important

# **SPLAT FACTOR**

- Coal Pipe Velocity increases due to
- 1. High PA flow (mill A/F)
- 2. Low CV coal
- 3. High moisture







#### How do you balance air if coal is unbalanced?



#### Burners don't always allow much +/- adjustment



#### **Primary Air Flow Curve**



#### **Primary Air Flow Curve**



What is your Primary Air to Fuel Ratio A/F?



High PA flow hurts fineness

# Sizing

## Set for Coal type Set for Slag control Set for Maintenance

May be opposite directions

# Fouling

# Sodium and Potassium

Calcium

## **Organically Bound Alkalis**









# CaO + SO3 = CaSO4

# Think Fluid Bed Boiler & Fouling Deposits

# Sodium Condenses on Surface



# Causing a Molten Layer on Surface



Iron, Fe<sub>2</sub>O<sub>3</sub> Calcium, CaO Sodium, Na<sub>2</sub>O are the glues



Coal Combustion Inc. Understanding the business of coal

Rod Hatt Coal Combustion, Inc. 114 South Main Street Versailles, KY 40383 USA 859-873-0188 www.coalcombustion.com