

Coal Combustion Inc. Understanding the business of coal

"It's the coal"

Rod Hatt 859-873-0188 rod_hatt@coalcombustion.com

Measuring Coal Quality

Power plant operators rarely get CQ info Coal Sales Data Actual ASTM Analyses On-Line information

Lots of Confusion Major impacts . Design and Operation of plant

Measuring Coal Quality

ASTM only produces average data

Power plants respond to swings in quality

What makes coal people different

Pure Coal Analyses

problems

Small and Large Variability

ASTM reports same ash level

Nuclear On Line Analyzers Over the belt Most Measures Ash and Sulfur Chemistry This is valuable information **Measures chemistry** not Moisture, Btu/lb

> Needs regular calibration Needs prior knowledge of coal Good for coal mining industry

New technology measures Carbon and Oxygen No Prior Knowledge of Coal

Maybe this or some other analyzer that measures C, O will provide what power plants and buyers need

Now we can measure variability in coal quality

Does this coal met spec?

Coal Combustion Inc. Understanding the business of coal

Training – Action - Plans and software for **Power Plants to use On-Line** and other **Coal Quality** information

Ash Btu

The Many Faces of Slag

Kansas Style

Ohio Style

Texas Style

Slag

Related to:

Coal Quality – Getting Worse? Plant Equipment – Boiler/Mills Fixed Combustion Process -This we can control: Superior Mill Performance Maintain Mills to Preserve BOILER – Lower F.O.R.

SO2 vs Fe2O3

Waterwall Corrosion . Tube Leaks

Pulverizers Coal Flow Air Flow Coal Pipe Velocity Outlet Temperature Coal Fineness Reject Material

Ash Wears Them Out

Impacts load High Maintenance Performance Testing

Pulverizer Performance

70 % passing a 200 mesh screen

Minimum or Maximum

Need 75% for high pyrite low NOx

Acid Oxides Basic Oxides

SiO2 Al2O3 TiO2

Fe2O3 CaO MgO **K2O** Na2O

Glass Formers Fluxes

Role of Iron Acid Base **Fe2O3** FeO **Fe3O4** Oxidized Reduced Good Poor

Slag Index = dry S x B/A = dry S (~1/3 to 2/3 pyrite) x B/A = dry S (FeS₂)xFe2O3 CaO+.../SiO2+... Traditional Slagging Index

SI ~ (Fe)² (iron squared)

This means that as sulfur increases the slagging increases exponentially.

Coal Combustion Inc. Understanding the business of coal

Organically Bound Alkalis

Ash CaO

Foul Index = Na₂O x B/A ~ Illinois Coal

Coal Combustion Inc. Understanding the business of coal

Slag is a build up of rate process SO, the amount of ash should matter.

Lbs. of ash/MBtu = %ash / (Btu/10,000)

Lbs. of element/MBtu

= %ash / (Btu/10,000) X (%Element/100)

Many slagging concerns have been addressed using Ash Loading and Elemental loading levels; especially

Fe_2O_3 , CaO, Na₂O

Coal Combustion Inc.

Understanding the business of coal

Thank you!